SHASHIKANT PANDEY

Dedicated to my father.

ABSTRACT. In this paper we study about anti-holomorphic semi-invariant submersion from almost para-Hermitian manifolds. We give example and investigate integrability of all distribution involved in the submersion also we prove that the O'Niell's tensor T vanishes on the invariant vertical distribution. We give necessary and sufficient condition for totally geodesicness and harmonicity of such type of submersions.

1. INTRODUCTION

The theory of Riemannian submersions was introduced by O'Niell and Gray in [4], [1], respectively and Watson introduced the Riemannian submersions between almost complex manifolds in [8]. Riemannian submersion between almost contact manifolds were studied by Chinea in [9] under the name of almost contact submersion. Riemannian submersion have been also studied for quaternionic Kähler manifolds [20] and para-quaternionic Kähler manifolds [3], [21]. Most of the studies related to Riemannian or almost Hermitian submersions can be found in book [16]. The study of anti-invariant Riemannian submersions from almost Hermitian manifolds were introduced by Sahin [6]. Recently Sahid and Tanveer extended this notion to the case when the total manifold is nearly Kähler in [2]. There are some recent paper which involve other structures such as Lagrangian submersion [10], almost product submersion [22], sasakian [11], anti invariant Riemannian submersion [19], semi-invariant submersion [7], semi-slant submersion [14] and H-slant submersion [13]. On the other hand para-complex manifolds, almost para-Hermitian manifolds and para-Kähler manifolds were defined by Libermann [18] in 1952. In fact such manifolds arose in [17].

Semi-Riemannian submersion were initiated by O'Niell in his book [5]. It is well known that such submersion have their application in Kaluza Klien theories, Yang Mills equation, string theories and supergravity. For application of semi-Riemannian submersion, see[15]. Since almost para-Hermitian manifolds are semi-Riemannian manifolds so we can consider a semi-Riemannian submersion from semi-Riemannian manifolds. In particular, the notion of semi-invariant is a natural generalization of the notion anti-invariant submersion.

The paper is organized as follows. In section 2, we give some notions needed for the paper. In section 3, we give the definition of anti-holomorphic semi-invariant

²⁰⁰⁰ Mathematics Subject Classification. 53C15, 53C20, 53C50.

 $Key\ words\ and\ phrases.$ Riemannian Submersion, Semi-Riemannian submersion, Almost Para-Hermitian manifolds.

This paper is in final form and no version of it will be submitted for publication elsewhere.

SHASHIKANT PANDEY

semi-Riemannian submersions provide an example. In section 4, we study the integrability and totally geodesicness of the distributions involved in the definition of anti-holomorphic semi-invariant semi-Riemannian submersion. In section 5, we shall prove the totally geodesicness and harmonicity of an anti-holomorphic semi-invariant semi-Riemannian submersion.

2. Preliminaries

In this section, we define almost para-Hermitian manifolds recall that the notion of semi-Riemannian submersions from semi-Riemannian manifolds and give a brief review of semi-Riemannian submersions also we define an anti-holomorphic semiinvariant semi-Riemannian submersion.

An almost para-Hermitian manifold is a manifold M endowed with an almost para-complex structure $J \neq \pm I$ and a semi-Riemannian metric g such that

$$(2.1) J^2 = I$$

$$(2.2) g(JX, JY) = g(X, Y)$$

for $X, Y \in \Gamma TM$, where I is the identity map the dimension of M is even and the signature of q is (m, m), where dim M = 2m. Consider an almost para-Hermitian manifold (M, J, g) and denoted by ∇ the Livi-Civita connection on M with respect to g. Then M is called a para-Kähler manifold if J is parallel with respect to ∇ that is

(2.3)
$$(\nabla_X J)Y = 0$$

for $X, Y \in \Gamma TM$ [19].

Let (M, g) and (N, g_n) be two connected semi-Riemannian manifolds of index $r \ (0 \le r \le \dim M)$ and $r' \ (0 \le r' \le \dim N)$ respectively, with r > r'. A semi-Riemannian submersion is a smooth map $\pi : M \to N$ which is onto and satisfies the following conditions:

- (a) $\pi_{*x}: T_x M \to T_{\pi(x)} N$ is onto for all $x \in M$.
- (b) The fibers $\pi^{-1}(x)$, $x \in N$ are semi-Riemannian submanifolds of M.
- (c) π_* preserves scalar product of vectors normal to fibers.

The vectors tangent to the fibers are called vertical and those normal to the fibers are called horizontal. We denote by D^{\perp} and D the vertical distribution and the horizontal distribution respectively. Also by v and h the vertical and horizontal projection respectively. A horizontal vector field X on M is said to be basic if X is π related to a vector field X on N has unique horizontal lift X to M and X is basic.

We recall that the section of D^{\perp} and D are called the vertical vector fields and horizontal vector fields respectively. A semi-Riemannian submersion $\pi : M \to N$ determines two (1,2) tensor T and A on M, by the formula

$$T_E F = h \nabla_{vE} v F + v \nabla_{vE} h F$$

$$A_E F = h \nabla_{hE} v F + v \nabla_{hE} h F$$
(2.4)

for any $E, F \in \Gamma(TM)$, where v and h are vertical and horizontal projection. From (9) it is easy to see that T_E and A_E are skew symmetric operators on the tangent bundle of M reversing the vertical and horizontal distributions. We summarize the properties of the tensor fields T and A. Let X, Y be vertical and U, W be horizontal vector fields on M, then we have the following results

$$(2.5) T_U V = T_V U$$

(2.6)
$$A_X Y = -A_Y X = \frac{1}{2} v[X, Y]$$

On the other hand from (4) we get

$$\nabla_U W = T_U W + \hat{\nabla}_U W \tag{2.9}$$

$$\nabla_U X = T_U X + h(\nabla_U X) \tag{2.8}$$

$$\nabla_X U = A_X U + v(\nabla_X U) \tag{2.9}$$

$$\nabla_X Y = A_X Y + h(\nabla_X Y) \tag{2.10}$$

where $\hat{\nabla}_U W = v \nabla_U W$ and $h(\nabla_U X) = h(\nabla_X U) = A_X U$ if X is basic. It is easy to observe that T acts on the fibers as the second fundamental form while A acts on the horizontal distribution and measure of the obstruction to the integrability of the distribution.

Finally, we recall that the notion of second fundamental form of a map between semi-Riemannian manifolds. Let (M, g) and (N, g_n) be semi-Riemannian manifolds and $\phi : (M, g) \to (N, g_n)$ a smooth map. Then the second fundamental form of ϕ is given by

(2.11)
$$(\nabla\phi_*)(X,Y) = \nabla^{\phi}_X \phi_* Y - \phi_*(X,Y)$$

for $X, Y \in \Gamma TM$. Where ∇^{ϕ} is the pullback connection and we denote conveniently by ∇ the Livi-Civita connection of the metric g and g_n recall that the ϕ is said to be harmonic if $trace(\nabla \phi_*) = 0$ and ϕ is called a totally geodesic map if $(\nabla \phi_*)(X, Y) = 0$ for $X, Y \in \Gamma TM$. It is known that second fundamental form is symmetric.

3. ANTI-HOLOMORPHIC SEMI-INVARIANT SUBMERSION

Definition 1. Let M be a 2k-dimensional almost para-Hermitian manifold with Hermitian metric g and almost complex structure J and N be the semi-Riemannian metric g_n . A semi-Riemannian submersion $\pi : (M, g, J) \to (N, g_n)$ is called semiinvariant submersion if there is a distribution $D \subset \ker \pi_*$ such that

$$\ker \pi_* = D \oplus D^{\perp}, \ J(D) = D, \quad J(D^{\perp}) \subset (\ker \pi_*)^{\perp}$$

where D^{\perp} is the orthogonal complement of D in ker π_* . In this case the horizontal distribution $(\ker \pi_*)^{\perp}$ is decomposed as

$$(\ker \pi_*)^{\perp} = J(D^{\perp}) \oplus \mu$$

SHASHIKANT PANDEY

where μ is the orthogonal complementary distribution of $J(D^{\perp})$ in $(\ker \pi_*)^{\perp}$ and it is invariant with respect to J.

Definition 2. Let $\pi: (M, g, J) \to (N, g_n)$ be a semi-invariant semi-Riemannian submersion then we said π is an anti-holomorphic semi-invariant semi-Riemannian submersion if

$$(\ker \pi_*)^{\perp} = J(D^{\perp})$$
 i.e. $\mu = \{0\}$

If we let the dimension of distribution D (resp. D^{\perp}) is 2m (resp. 2n). Then the $\dim(M) = 2m + 2n$ and $\dim(N) = n$.

An anti-holomorphic semi-invariant semi-Riemannian submersion is called a proper anti-holomorphic semi-invariant semi-Riemannian submersion if m and n are non zero.

Now we are ready to study anti-holomorphic semi-invariant semi-Riemannian submersion from para-Kähler manifold. We get how the Kählerian structure on Mplaces restriction on the tensor fields T and A of an anti-holomorphic semi-invariant semi-Riemannian submersion $\pi : (M, g, J) \to (N, g_n)$.

Now we give an example of an anti-holomorphic semi-invariant semi-Riemannian submersion.

Example 1. Define $\pi : R^4 \to R_1$ by $\pi(x_1, x_2, x_3, x_4) = (\frac{x_3 + x_4}{\sqrt{2}})$ Then the map π is a semi-Riemannian submersion and $\ker \pi_* = D \oplus D^{\perp} \text{ where } D = span(\partial_1, \partial_2)$ $D^{\perp} = span(\partial_3 + \partial_4)$ and $\ker \pi^{\perp}_* = span(\partial_4 - \partial_3)$, where $\partial_i = \frac{\partial}{\partial x_i}$ It is clear from definition the map π is a proper anti-holomorphic semi-invariant

semi-Riemannian submersion.

Lemma 3.1- Let π be a Lagrangian semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then, we get

(a) $T_V J X = J T_V X$

(b) $A_{\xi}JX = JA_{\xi}X$

where V is a vertical vector field, ξ is a horizontal vector field and X is a vector field on M.

It is easy to show that this Lemma holds for an anti-holomorphic semi-invariant semi-Riemannian submersion.

4. INTEGRABILITY AND TOTALLY GEODESICNESS

In this section, we shall prove the integrability and totally geodesicness of the distributions.

Lemma 4.1- Let π be a semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then

(a) The anti-invariant distribution D^{\perp} is always integrable.

(b) The invariant distribution D is always integrable iff

$$g(T_ZJW - T_WJZ, JX) = 0$$

for $Z, W \in D$ and $X \in D^{\perp}$.

Thus, using Lemma 3.1 and (2.5) we get the following result. From Lemma 4.1 we easily conclude the following result.

Lemma 4.2- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then

(a) The anti-invariant distribution D^{\perp} is always integrable.

(b) The invariant distribution D is always integrable.

Now, we are ready to state one of the main results.

Theorem 4.3- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then horizontal distribution $(\ker \pi_*)^{\perp}$ is integrable and totally geodesic, i.e. $A \equiv 0$.

Proof. The proof of this Theorem is similar to the proof of Theorem 4.5 ([7]). So we leave it.

Note that the vertical distribution ker π_* is always integrable.

Lemma 4.4- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then the anti-invariant distribution D^{\perp} defines a totally geodesic foliation in the fibers $\pi^{-1}(x), x \in N$.

Proof. Suppose $X, Y \in D^{\perp}$ and $Z \in D$ using (2.1), (2.2), (2.7) and Lemma 3.1 we have

$$g(\hat{\nabla}_X Y, Z) = g(\nabla_X Y, Z)$$

= $g(J\nabla_X JY, Z) = g(\nabla_X JY, JZ)$
= $g(T_X JY, JZ) = g(JT_X Y, JZ)$
= $-g(T_X Y, Z) = 0$
 $g(\hat{\nabla}_X Y, Z) = 0$

this complete the proof.

Also in a similar way, we have the following results.

Lemma 4.5- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then the anti-invariant distribution D defines a totally geodesic foliation in the fibers $\pi^{-1}(x), x \in N$.

By Lemma 4.4 and 4.5, we have the result.

Theorem 4.6-Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then the fibers of π are locally product semi-Riemannian manifolds.

Proof. If we see O'Niell tensor T of the anti-holomorphic semi-invariant submersion π .

Suppose $U, V \in \ker \pi_*$ and $\xi \in (\ker \pi_*)^{\perp}$ since $(\ker \pi_*)^{\perp} = J(D^{\perp})$ there is a vector field $X \in D^{\perp}$ such that $\xi = JX$. Then, we get

> $g(T_UV,\xi) = g(T_UV,JX)$ = $-g(JT_UV,X)$ = $-g(T_UJV,X)$

Hence for $V \in D$ we have

From (4.1) we get

$$(4.2) T_U D = 0$$

for $U \in \ker \pi_*$. Thus using equation (4.2), we have the following main result.

Theorem 4.7- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then, we have

(a) $T_X Z = 0 = T_Z X$ (b) $T_Z W = 0$ where $X \in D^{\perp}$ and $Z, W \in D$.

We easily see that from Theorem 4.7, $T_Z \xi = 0$ for any $Z \in D$ and $\xi \in (\ker \pi_*)^{\perp}$.

Thus, we have the following results.

Corollary 4.8- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then, we have always $T_Z \equiv 0$ for $Z \in D$.

From the part (a) of the Theorem 4.7, we get:

Corollary 4.9- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then, the fibers of π are always mixed totally geodesic.

From the part (b) of Theorem 4.7, we have that:

Corollary 4.10- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then, the foliation of the invariant distribution D are totally geodesic in the total space M.

Also from Theorem 4.7, it follows that.

Corollary 4.11- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then, $T \equiv 0$ iff $T_X Y = 0$ for all $X, Y \in D^{\perp}$ i.e. $T_{D^{\perp}} D^{\perp} = 0$.

Hence, we can also get the following results.

785

7

Corollary 4.12- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then $(\ker \pi_*)$ defines a totally geodesic foliation iff $T_{D^{\perp}}D^{\perp} = 0$.

Since O'Niell's tensor $A \equiv 0$ and by Corollary 4.12, we get:

Theorem 4.13- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then, M is a locally product manifold $M_{(\ker \pi_*)} \times M_{(\ker \pi_*)^{\perp}}$ iff $T_{D^{\perp}}D^{\perp} = 0$.

5. Totally Geodesicness and Harmonicity of the Anti-Holomorphic Semi-Invariant Semi-Riemannian Submersion

The smooth map ϕ between two semi-Riemannian manifolds is called totally geodesic if $\nabla \phi_* = 0$

We shall examine the totally geodesicness and harmonicity of an anti-invariant submersion in this section. Here we give necessary and sufficient condition for an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) to be a totally geodesic map.

Theorem 5.1- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then π is a totally geodesic map iff $T_{D^{\perp}}D^{\perp} = 0$.

Proof. Since π is a semi-Riemannian submersion we have

 $(5.1) \qquad (\nabla \pi_*)(E,F) = 0$

for all $E, F \in (\ker \pi_*)^{\perp}$ and for any $X, Y \in \ker \pi_*$, using (2.7) we have

$$\begin{aligned} (\nabla \pi_*)(X,Y) &= -\pi_*(\nabla_X Y) \\ &= -\pi_*(T_X Y + \hat{\nabla}_X Y) \\ &= -\pi_*(T_X Y) \end{aligned}$$

since π is linear isometry between $(\ker \pi_*)^{\perp}$ and ΓTN . Hence, it follows that $(\nabla \pi_*)(X, Y) = 0$ iff $T_X Y = 0$ for all $X, Y \in \ker \pi_*$ that is;

(5.2)
$$(\nabla \pi_*)(X,Y) = 0 \Leftrightarrow T \equiv 0$$

Similarly for any $X \in \ker \pi_*$ and $E \in (\ker \pi_*)^{\perp}$, using (2.9), we get

$$(\nabla \pi_*)(E, X) = -\pi_*(\nabla_E X)$$

= $-\pi_*(A_E X + v \nabla_E X)$

Since π is linear isometry between $(\ker \pi_*)^{\perp}$ and ΓTN and $A \equiv 0$, it gives that

$$(5.3) \qquad (\nabla \pi_*)(E,X) = 0$$

SHASHIKANT PANDEY

for any $X \in \ker \pi_*$ and $E \in (\ker \pi_*)^{\perp}$.

Thus from (5.1), (5.2) and (5.3) we have $(\nabla \pi_*) = 0$ iff $T \equiv 0$.

Now, we shall examine the harmonicity of an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Recall that a smooth map ϕ is harmonic iff it has minimal fibers [19]. Thus the submersion π is harmonic iff $\sum_{k=1}^{2m+n} T_{v_k} v_k = 0$ where (v_1, \dots, v_{2m+n}) is a local orthonormal frame of $(\ker \pi_*)$ but because of Theorem 4.7, it follows that π is harmonic iff $\sum_{k=1}^{n} T_{e_i} e_i = 0$.

Theorem 5.2- Let π be an anti-holomorphic semi-invariant semi-Riemannian submersion from a para-Kähler manifold (M, g, J) onto a semi-Riemannian manifold (N, g_n) . Then, π is harmonic iff

$$traceJT_X = 0$$
 for all $X \in D^{\perp}$.

Proof. Let $X \neq 0$ vector field in D^{\perp}

Then, for $1 \leq i \leq n$, using the skew symmetricalness of T_E Using Lemma 3.1 and (2.5), we have

$$g(T_{e_i}e_i, JX) = -g(T_{e_i}Je_i, X)$$

$$= -g(JT_{e_i}X, e_i)$$

$$= -g(JT_Xe_i, e_i)$$

Hence, we get

8

4)
$$g(\sum_{k=1}^{n} T_{e_i} e_i, JX) = -\sum_{k=1}^{n} g(JT_X e_i, e_i)$$

for all $X \in D^{\perp}$.

Thus from (5.4) we have the results.

References

- A. Gray, Pseudo Riemannian almost product manifolds and submersions, Journal of Applied Mathematics and Mechanics, Vol. 16 (1967), pp. 715-737.
- [2] A. Sahid, F. Tanveer, Anti-invariant Riemannian submersion from nearly Kählerian manifolds, Filomat 27(7) (2013), 1219-1235.
- [3] A.V. Caldarella, On paraquternionic submersion between paraquaternionic Kähler manifolds, Acta Application Mathematicae, Vol. 112 (2010), no. 1, pp. 1-14.
- B. O' Neill, The fundamental equation of a submersion, The Michigan Mathematical journal, Vol. 13 (1966), pp. 459-469.
- [5] B. O' Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, NY, USA, Vol. 103 (1983).
- [6] B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8(3) (2010), 437-447.
- [7] B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canadian. Math. Bull. 56(1) (2013), 173-182.
- [8] B. Watson, Almost Hermitian submersion, Journal of Differential Geometry, Vol. 11 (1976), no. 1, pp. 147-165.

- [9] D. Chinea, Almost contact metric submersion, Rendiconti del Circolo Matematico di Palremo, Vol. 34 (1985), no. 1, pp. 89-104.
- [10] H. M. Tastan, On Lagrangian submersions, Hacettepe J. Math. Stat. 2013.
- [11] I. Kupeli Erken, C. Murathan, Anti-invariant Riemannian submersion from Sasakian manifolds, arXiv:1302.4906.
- [12] K.S. Park, H semi-invariant submersion, Taiwanese Journal of Mathematics, Vol. 16 (2012), no. 5, pp. 1865-1878.
- [13] K. S. Park, H-slant submersion, Bull Korean Math, Soc 49(2) (2012), pp. 329-338.
- [14] K. S. Park, R. Prasad, Semi-slant submersions, arXive:1201.0814v2 [math.DG], 2013.
- [15] M. Falcitelli, S. Ianus, A.M. Pastore and M.Visinescu, Some application of Riemannian submersions in physics, Rev. Roum. phys., Vol. 48 (2003) pp. 627-639.
- [16] M. Falcitelli, S. Ianus and A. M. Pastore, Riemannian submersion and related topics, World Scientific, River Edge. NJ, 2004.
- [17] P.K. Rasevskii, The scaler field in a stratified space, Trudy seminara po Vektornomu i Tenzunomu Analizu, Vol. 6 (1948), pp. 225-248.
- [18] P. Libermann, Sur les structure presque paracomplexes, Comptes Rendus de I' Academie des sciences, Vol. 234 (1952), pp. 2517-2519.
- [19] P. Baird, J.C. Wood, Harmonic morphism between Riemannian manifolds, Oxford Science Publications, 2003.
- [20] S. Ianus, R. Mazzoco and G.E. Vilcu, Riemmanian submersions from quaternionic manifolds, Acta Applicandae Mathematicae, Vol. 104(2010), no. 1. pp. 1-14.
- [21] S. Ianus, S. Marchiafava and G.E. Vilcu, Paraquaternionic CR submanifolds of paraquternionic Kähler manifolds and semi-Riemannian submersions, Central European Journal of Mathematics, Vol. 8 (2010), no. 4, pp. 735-753.
- [22] Y. Gunduzalp, Anti-invariant Riemannian submersion from almost product Riemannian manifolds, Math. Sci. and Appl. E-notes, 1(2013), 58-66.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY, UNIVERSITY OF LUCKNOW, LUCKNOW-226007(INDIA)

E-mail address: shashi.royal.lko@gmail.com *URL*: http://www.lkouniv.ac.in